(-4x^2+5)/(3x^2-14x-5)=0

Simple and best practice solution for (-4x^2+5)/(3x^2-14x-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4x^2+5)/(3x^2-14x-5)=0 equation:



(-4x^2+5)/(3x^2-14x-5)=0
Domain of the equation: (3x^2-14x-5)!=0
We move all terms containing x to the left, all other terms to the right
3x^2-14x!=5
x∈R
We multiply all the terms by the denominator
(-4x^2+5)=0
We get rid of parentheses
-4x^2+5=0
a = -4; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-4)·5
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-4}=\frac{0-4\sqrt{5}}{-8} =-\frac{4\sqrt{5}}{-8} =-\frac{\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-4}=\frac{0+4\sqrt{5}}{-8} =\frac{4\sqrt{5}}{-8} =\frac{\sqrt{5}}{-2} $

See similar equations:

| F(x)=(-4x^2+5)/(3x^2-14x-5) | | 2.5x-11=14 | | 29=114-x/2 | | 4.x+3=23 | | -6(y-2y)+9=-2(6y-y)+6+15y | | 2(4x+6)=8x+ | | -13=5v-7-2v | | 5(a-8)+22=3(a-4) | | 5(4x-3)+11=-3 | | x-0.2x=2600000 | | 0.125=(0.5)^(639000/h) | | 3.6=2n | | 2/5d=6/15 | | 5(4x+3)-4(2x+1)=47 | | 9x-12=5x-4 | | 2k(4+3)-13=2(8-k)-13 | | k=17=49 | | 4(2a+3)-7=3(a-5) | | 20.7=b/9 | | 9y+2y=160y | | 0.5b=3(0.5) | | -9-d=6 | | -9c-2=8 | | 4r+8=-4 | | 720/55x=42 | | 5r+8=3 | | m/9.9=2 | | 11(v+11)=11 | | w/6+5.3=-4.3 | | (5y-3)1/2=1/2(y+12) | | 1.08=18a | | y+12=5y-3 |

Equations solver categories